1. РФФИ 16-53-76019
  2. D. O. Krasnov, L. O. Khoroshavin, and P. N. D’yachkov. Spin–Orbit Coupling in Single-Walled Gold Nanotubes. Russian Journal of Inorganic Chemistry, 2019, Vol. 64, No. 1, pp. 108–113. © Pleiades Publishing, Ltd., 2019.
  3. Nail R. Sadykov, , Dmitry A. Peshkov, and Pavel N. D’yachkov. Combined Effect of External Periodic and Constant Electric Fields on Electron Transport in Carbon Nanotubes and Nanoribbonswith Metallic Conductivity. Journal of the Physical Society of Japan 86, 034712 (2017).
  4. L. O. Khoroshavin, D. O. Krasnov, P. N. D’yackov and E. M. Kol’tsova. Electronic Properties of Achiral and Chiral Gold Nanotubes. Russian Journal of Inorganic Chemistry, 2017, Vol. 62, No. 6, pp. 783–789. © Pleiades Publishing, Ltd., 2017.
  5. P. N. D’yachkov, Effect of Nitrogen and Phosphorus Dopantson the Electronic Properties of ZrO2 Nanotubes. Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 8, pp. 1076–1078. © Pleiades Publishing, Ltd., 2018.
  6. E. P. D’yachkov and P. N. D’yachkov. The Effect of 3d-Metal Dopantson the Electronic Structure of Carbon Nanotubes. Russian Journal of Inorganic Chemistry, 2016, Vol. 61, No. 6, pp. 726–730. © Pleiades Publishing, Ltd., 2016.
  7. P.N. D'yachkov, D.O. Krasnov. Electronic and transport properties of deformed platinum nanotubes calculated using relativistic linear augmented cylindrical wave method. Chemical Physics Letters 720 (2019) 15–18
  8. P. N. D’yachkov, I. A. Bochkov. Ab initio band structure of quasi-metallic carbon nanotubes for terahertz applications. COMPUTER MODELLING & NEW TECHNOLOGIES 2018 22(1)7-19
  9. Sergei Piskunov, Oleg Lisovski, Yuri F. Zhukovskii, Pavel N. D’yachkov, Robert A. Evarestov, Stephane Kenmoe, and Eckhard Spohr. First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts. ACS Omega 2019, 4, 1434−1442.
  10. E.P. D’yachkov, I.A. Bochkov, D.V. Makaev, P.N. D’yachkov, E. P. D’yachkov, *, I. A. Bochkov, D. V. Makaev, and P. N. D’yachkov. Electronic Properties of 3d-Metal-Doped Zirconia Nanotubes.  Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 10, pp. 1340–1344.
  11. Andrei V Bandura1, Robert A Evarestov, Sergey I Lukyanov, Sergei Piskunov and Yuri F Zhukovskii. Simulation of Young’s moduli for hexagonal ZnO [0 0 0 1]-oriented nanowires: first principles and molecular mechanical calculations, Mater. Res. Express 4 (2017) 085014
  12. Yu.F.Zhukovskii, S. Piskunov, O. Lisovski, D. Bocharov, and R. A. Evarestov. Doped 1D Nanostructures of Transition-metal Oxides: First-principles Evaluation of Photocatalytic Suitability, 10.1002/ijch.201600099
  13. Dmitry Bocharov, Sergei Piskunov, Yuri F. Zhukovskii, Eckhard Spohr, Pavel N. D'yachkov. First principles modeling of 3d-metal doped three-layer fluorite-structured TiO2 (4,4) nanotube to be used for photocatalytic hydrogen production. Vacuum, Volume 146, December 2017, Pages 562-569
  14. E. P. D’yachkova, *, I. A. Bochkovb, V. A. Zalueva, and P. N. D’yachkova. Electronic Properties of Titanium Dioxide Nanotubes Doped with 4d Metal, Russian Journal of Inorganic Chemistry, 2017, Vol. 62, No. 8, pp. 1048–1050. © Pleiades Publishing, Ltd., 2017.
  15. E. P. D’yachkov*, D. V. Makaev, L. O. Khoroshavin, and P. N. D’yachkov, Effect of 3d-Metal Dopants on the Electronic Properties of Hexagonal Titanium Dioxide Nanotubes, Russian Journal of Inorganic Chemistry, 2017, Vol. 62, No. 7, pp. 931–934. © Pleiades Publishing, Ltd., 2017.
  16. P. N. D’yachkov.Optical Band Gap Energy in Quasi-Metal Carbon Nanotubes. Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 1, pp. 55–60. © Pleiades Publishing, Ltd., 2018
  17. Pavel D’yachkov and Dmitry Makaev. Ab Initio Spin-Dependent Band Structures of Carbon Nanotubes. International Journal of Quantum Chemistry 2016, 116, 316–324
  18. Pavel N. D’yachkov. Linear Augmented Cylindrical Wave Method for Nanotubes Electronic Structure.  International Journal of Quantum Chemistry 2016, 116, 174–188
  19. P. N. D’yachkov, V. A. Zaluev, S. N. Piskunov and Y. F. Zhukovskii. Comparative analysis of the electronic structures of mono- and bi-atomic chains of IV, III–V and II–VI group elements calculated using the DFT LCAO and LACW methods. Roy. Soc. of Chem. Adv. 2015, 5, 91751–91759.
  20. P. N. D’yachkov. Electronic Structure of a Gold Nanotube. Russ. J. Inorg. Chem. 2015, Vol. 60, No. 8, pp. 947–949.
  21. Pavel N. D’yachkov and Vasiliy A. Zaluev. Spin−Orbit Gaps in Carbynes. J. Phys. Chem. C. 2014, 118, 2799.
  22. I. A. Bochkov, E. P. D’yachkov, and P. N. D’yachkov. Electronic Structure of Boron Nitride Nanotubes Intercalated with Transition Metals. Russian Journal of Inorganic Chemistry, 2014, Vol. 59, No. 12, pp. 1448–1455   
  23. E. P. D’yachkov, L. O. Khoroshavin, I. A. Bochkov, E. M. Kol’tsova, and P. N. D’yachkov. The Effect of 3d-[1]Metal Intercalation on the Electronic Structure of Metallic and Semiconducting Nanotubes. Russ. J. Inorg. Chem., 2014, Vol. 59, No. 7, pp. 682–687. 
  24. P. N. D’yachkov, V. A. Zaluev, E. Yu. Kocherga, and N. R. Sadykov. Tight Binding Model of Quantum Conductance of Cumulenic and Polyynic Carbynes. J. Phys. Chem. C 2013, 117, 16306−16315.
  25. Yuri F. Zhukovskii, Sergei Piskunov, Jurijs Kazerovskis, Dmitry V. Makaev, and Pavel N. D’yachkov. Comparative Theoretical Analysis of BN Nanotubes Doped with Al, P, Ga, As, In, and Sb. J. Phys. Chem. C 2013, 117, 14235−14240.
  26. Evgeny P. D’yachkov and Pavel N. D’yachkov. Location of Paclitaxel and Poly(ethylene glycol) in Triple Antitumor Complexes with Single-Walled Nanotubes According to the Molecular Docking Method. Nanoscience and Nanotechnology Letters Vol. 5, 1–3, 2013.
  27. Jurijs Kazerovskis, Sergei Piskunov, Yuri F. Zhukovskii, Pavel N. D’yachkov, Stefano Bellucci. Formation of linear Ni nanochains inside carbon nanotubes: Prediction from density functional theory. Chem. Phys. Lett. 2013. 577, 92-95.
  28. I. A. Bochkov and P. N. D’yachkov. Electronic Structure of Carbon Nanotubes with Copper Core. Russian Journal of Inorganic Chemistry, 2013, Vol. 58, No. 7, pp. 800–802.
  29. N. P. Sadykov, E. Yu. Kochergaa, and P. N. D’yachkov. Nonlinear Current in Modified Nanotubes with Exposure to Alternating and Constant Electric Fields.  Russian Journal of Inorganic Chemistry, 2013, Vol. 58, No. 8, pp. 951–955.
  30. P D’yachkov and D Kutlubaev. Spin-Orbit Gaps in Armchair Nanotubes Calculated Using the Linear Augmented Cylindrical Wave Method. IOP Conf. Series: Materials Science and Engineering 38 (2012) 012003.
  31. N. V. Kiruta, E. P. D’yachkov, P. N. D’yachkov. SUPRAMOLECULAR COMPLEXES OF CARBON NANOTUBES WITH DOXORUBICIN AND POLY (ETHYLENE GLYCOL) STUDIED USING THE MOLECULAR DOCKING AND DYNAMIC METHODS. Computer Modelling and New Technologies, 2011, Vol.15, No.4, 16–22.
  32. E. P. D’yachkov, P. N. D’yachkov, and R. I. Zhdanov. Interaction of Single[1]Walled Nanotubes with Doxorubicin and Poly(ethylene glycol) according to the Molecular Docking Method.  Doklady Physical Chemistry, 2011, Vol. 437, Part 2, pp. 65–67.
  33. Pavel N. D’Yachkov. Cylindrical Wave Method for Pure 3and Doped Nanotubes. Nanodevices and Nanomaterials for Ecological Security. Chapter 8. NATO Science for Peace and Security Series
    Springer.
    2011
  34. D. Z. Kutlubaev, D. V. Makaev, and P. N. D’yachkov. Electronic Structure of Carbon Nanotubes with an Impurity Point Defect.  Russian Journal of Inorganic Chemistry, 2011, Vol. 56, No. 8, pp. 1301–1305.
  35. D’yachkov, P. Linear Augmented Cylindrical Wave Green’s Function Method for Perfect Nanotubes and Nanotubes with Regular and Point Impurities. Russ. J. Inorg. Chem. 2011, 56, 2160−2182. 
  36. D’yachkov, P. N.; Kutlubaev, D. Z.; Makaev, D. V. Linear Augmented Cylindrical Wave Green’s Function Method for Electronic Structure of Nanotubes with Substitutional Impurities. Phys. Rev. B 2010, 82, No. 035426.
  37. Pavel N. D’yachkov, Nina V. Kharchevnikova, Zoya I. Zholdakova, Nathalia Fjodorova, Mariana Novich, Marian Vrachko. Quantum Chemical Metabolism-Based Simulation of Carcinogenic Potency of Benzene Derivatives. International Journal of Quantum Chemistry, Vol 110, 1402–1411 (2010).
  38. A. M. Nemilentsau, M. V. Shuba, G. Ya. Slepyan, P. P. Kuzhir, and S. A. Maksimenko, P. N. D’yachkov, A. Lakhtakia. Substitutional doping of carbon nanotubes to control their electromagnetic characteristics. PHYSICAL REVIEW B 82, 235424 (2010)[1].
  39. A M Nemilentsau, M V Shuba, P N D’yachkov, G Ya Slepyan, P P Kuzhir1 and S A Maksimenko. Electromagnetic response of the composites containing chemically modied carbon nanotubes. Journal of Physics: Conference Series 248 (2010) 012003. 
  40. Pavel N. D’yachkov and Dmitry V. Makaev. Linear augmented cylindrical wave method and its applications to nanotubes electronic structure. Journal of Nanophotonics. 2010.
  41.  D’yachkov, P.; Makaev, D. Electronic Structure of BN Nanotubes with Intrinsic Defects NB and BN and Isoelectronic Substitutional Impurities PN, As N, Sb N, In B, Ga B, and AlB. J. Phys. Chem. Solids. 2009, 70, 180−185. 
  42. A. A. Lisenko  and P. N. D’yachkov. Combined Nanotubes BN–SiC: Theoretical Studies.  Russ. J. Inorg. Chem., 2009, Vol. 54, No. 8, pp. 1286–1289.
  43. A. S. Romanov, A. A. Lisenko, P. M. Silenko, and P. N. D’yachkovc. Electronic Structure of SiC/BN Composite Segmented Nanotubes. JETP Letters, 2009, Vol. 89, No. 11, pp. 558–562.
  44. D. V. Makaev and P. N. D’yachkov. Band Structure of Armchair Nanotubes Determined by the Linear Augmented Cylindrical Wave Method with Taking into Account Screw and Rotational Symmetry. Doklady Physical Chemistry, 2009, Vol. 424, Part 1, pp. 10–13.
  45. P.N. D’yachkov, N.V. Kharchevnikova, Z.I. Zholdakova, N. Fjodorova, M. Novich and M. Vrachko. Quantum Chemical Simulation of Cytochrome P450 Catalyzed Oxidation and Carcinogenic potency of Benzene Derivatives. Alexei Katashev, Yuri Dekhtyar, Janis Spigulis (Eds.): NBC 2008, Proceedings 20, pp. 616–618, 2008.
  46. D. V. Makaev and P. N. D’yachkov. Linearized Augmented Cylindrical Wave Method for Chiral Nanotubes. Doklady Physical Chemistry, 2008, Vol. 419, Part 1, pp. 47–52.   
  47. A. S. Romanov, D. V. Makaev, and P. N. D’yachkov. Influence of Isoelectronic Impurities on the Electronic Structure of BN Nanotubes. JETP Letters, 2008, Vol. 87, No. 1, pp. 50–54.  
  48. D’yachkov, P. N.; Makaev, D. V. Description of Band Structures of Armchair Nanotubes Using the Symmetry-Adapted Linear Augmented Cylindrical Wave Method. Phys. Status Solidi B 2009, 246, 140−146.
  49.  D’yachkov, P. N.; Makaev, D. V. Account of Helical and Rotational Symmetries in the Linear Augmented Cylindrical Wave Method for Calculating the Electronic Structure of Nanotubes: Towards the Ab Initio Determination of the Band Structure of a (100, 99) Tubule. Phys. Rev. B 2007, 76, No. 195411.
  50. P.N. D’yachkov, N. V. Kharchevnikova, A. V. Dmitriev, A. V. Kuznetsov, V. V. PoroikovQuantum Chemical Simulation of Cytochrome P450 Catalyzed Aromatic Oxidation: Metabolism, Toxicity, and Biodegradation of Benzene Derivatives. International Journal of Quantum Chemistry, Vol 107, 2454–2478 (2007)  
  51.  D’yachkov, P. N.; Makaev, D. V. Linear Augmented Cylindrical Wave Method for Calculating the Electronic Structure of Double-Wall Carbon Nanotubes. Phys. Rev. B 2006, 74, No. 155442. 
  52. P. N. D’yachkov and D. V. Makaev. Linear Augmented Cylindrical Wave Method for Embedded Carbon Nanotubes. Doklady Physical Chemistry, Vol. 402, Part 2, 2005, pp. 109–114. 
  53. R. I. Zhdanov, E. P. D´yachkov, N. B. Strazhevskaya, A. S. Shmyrina, A. S. Krylov, P. N. D´yachkov, W. Lorenz, and A. A. Kubatiev. Cholesterol and its fatty acid esters in native DNA preparations: lipid analysis, computer simulation of their interaction with DNA and cholesterol binding to immobilized oligodeoxyribonucleotides. Russian Chemical Bulletin, International Edition, Vol. 54, No. 9, pp. 2204—2210, September, 2005. 
  54. D’yachkov, P. N.; Hermann, H. Electronic Structure and Interband Transitions of Semiconducting Carbon Nanotubes. J. Appl. Phys. 2004, 95, 399−401.
  55.  P. N. D’yachkov, Augmented waves for nanomaterials. In: Encyclopedia of Nanoscience and Nanotechnology, Vol. 1; H. S. Nalwa, Ed.; American Scientific: Valencia, CA, 2004; pp. 191–212.  
  56. A. V. Nikulkina and P. N. D’yachkov. Electronic Structure of Nitrogen, Boron, and Oxygen Doped Nanotubes. Russ. J. Inorg. Chem., Vol. 49, No. 3, 2004, pp. 430–436.
  57. R. I. Zhdanov, E. P. Dyachkov, V. A. Struchkov, N. B. Strazhevskaya, and P. N. Dyachkov. DNA-bound lipids: computer modeling of DNA interaction with stearic acid and unsaturated fatty acids. Russian Chemical Bulletin, International Edition, Vol. 52, No. 9, pp. 1—, September, 2003
  58.  D’yachkov, P. N.; Hermann, H.; Kirin, D. V. Electronic Structure and Interband Transitions of Metallic Carbon Nanotubes. Appl. Phys. Lett. 2002, 81, 5228−5230.
  59. A. V. Nikolaev, P. N. Dyachkov. Solution of Periodic Poisson’s Equation and the Hartree–Fock Approach for Solids with Extended Electron States: Application to Linear Augmented Plane Wave Method. Intern. J. Quantum Chem. 2002; 89(2).57-85.
  60. П. Н. Дьячков. Углеродные нанотрубки. Материалы для компьютеров 21 века. Природа. 2000, № 11, С. 23-30.
  61. P. N. D’yachkov, D. V. Kirin, in Proceedings of the School and Workshop on Nanotubes and Nanostructures, Vol. 74; S. Belucci, Ed.; Italian Physical Society: Bologna, Italy, 2001; pp. 273–280. 
  62. D’yachkov, P. N.; Kirin, D. V. Extension of the Linear Augmented-Cylindrical-Wave Method to the Electronic Structure of Nanotubes with an Interior Hole. Dokl. Phys. Chem. 1999, 369, 326−333.
  63. Pave1 N. D’yachkov and Oleg M. Kepp. inear Augmented-Cylindrical-Wave Method for Nanotubes : Band structure of [Cu@C20]m. In: Science and Application of Nanotubes, edited by Tomanek and Enbody Kluwer Academic / Plenum Publishers, New York, 2000 p. 77-81.
  64. D’yachkov, P. N.; Kepp, O. M.; Nikolaev, A. V. Linearized Augmented-Cylindrical-Wave Method in the Electronic Structure Theory of Nanowires. Dokl. Chem. 1999, 365, 67−72.
  65. Pave1 N. D’yachkov, Natal’ya N. Breslavskaya. Isomerism of covalent C,Xk (n = 60, 70, 76, 78) fullerides. Journal of Molecular Structure (Theochem) 397 (1997) 199-211.
  66. Pavel N. Dyachkov, Nina V. Ioslovich, Alexander A. Levin. Electronic Structure of Silanes in the Semi-Empirical Equivalent Orbital Method. Vertical Ionization Potentials from the Data for Sill4, SizH 6 and Silicon Band Structure. Theoret. Chim. Acta (Bed.) 40, 237-244 (1975).
  67. Pavel N. Dyachkov and Alexandr A. Levin. Erratum Electronic Structure of Saturated Hydrocarbons in the Semi-Empirical Equivalent Orbital Method. 2. "Through Space Interactions" from the Data for Diamond and Neopentane. Theoret. Chim. Acta (Bed.) 40, 352 (1975)
  68. Pavel N. Dyachkov and Alexandr A. Levin. Electronic Structure of Saturated Hydrocarbons in the Semi-Empirical Equivalent Orbital Method. 2. "Through Space Interactions" from the Data for Diamond and Neopentane. Theoret. Chim. Acta (Berl.) 36, 181--194 (1975)
  69. P. N. Dyachkov and A. A. Levin. Electronic Structure of Saturated Hydrocarbons in the Semiempirical Equivalent Orbital Method. 1. Matrix Elements in Valence Approximation from Data for CH4, C2H 6 and Diamond. Theoret. Chim. Acta (Berl.) 33, 323-328 (1974).