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In this review paper, the main ideas and results of application

of the linearized augmented cylindrical wave (LACW) method

for the electron properties of the single-walled, double-walled,

embedded, and intercalated nanotubes are summarized. We

start with the simplest case of the achiral single-walled (n, 0)

and (n, n) tubules having small translational unit cells. Then,

the electron properties of chiral (n, m) nanotubes having very

large translational cells are discussed with account of tubules

possessing rotational and screw symmetries. Based on the

LACW and Green’s function techniques, the ab initio numerical

approach to calculating the electron local densities of states of

the substitutional impurities in the nanotubes is presented.

The relativistic version of LACW theory is described and

applied to calculating the effects of spin–orbit coupling on p-

bands of the cumulenic (C)n and polyynic (C2)n carbynes and

armchair tubules. The approach of the cylindrical waves

applied for the description of nanotubes permits to reproduce

their geometry in an explicit form that offers the great advan-

tages. VC 2015 Wiley Periodicals, Inc.

DOI: 10.1002/qua.25000

Introduction

Carbon nanotubes are the giant cage-like molecules looking like

closed hollow cylindrical shells.[1] The electronic structure of all-

carbon nanotubes have received much attention since 1992,

when the first calculations on the electron band structures of the

single-wall nanotubes were done in the terms of the H€uckel type

tight-binding technique.[2–5] Since 90s,[6,7] we are developing a lin-

earized augmented cylindrical wave method (LACW) for the nano-

tubes band structure at our laboratory. The LACW method is an

extension to the one-dimensional multiatomic systems with cylin-

drical or tubular structure of the augmented plane wave (APW)

theory suggested by J. Slater in 1937 for the bulk materials and

developed latter by O. K. Andersen, D. D. Koelling, and G. O. Arb-

man in a form of linearized APW (LAPW) technique.[8–11] In this

review, we briefly outline the physical basis and some applications

of the LACW technique. This method was emerged and developed

in our laboratory; perhaps, this justifies an unusually large number

of references to our publications in the bibliography.

The structure of this article is as follows. Initially, the neces-

sary information on the nanotubes geometry is provided. A

presentation of LACW method begins with a description of

the method for constructing the muffin-tin electron potentials

for the tubular and cylindrical polyatomic systems. The next

section is devoted to the theoretical basis of the method on

the examples of non-chiral single-walled nanotubes. Here, we

present also the results of numerical calculations of couple of

carbon nanotubes with armchair and zigzag geometries and

the semiconducting and metallic types of electron band struc-

tures. Further, considering the screw and rotational symmetry

of nanotubes, the methods of calculations of chiral systems

based on the techniques of LACW and Green’s functions are

described. The latter are used also for calculating the elec-

tronic properties of point defects in the nanotubes, which are

illustrated by examples of the density of electronic states in

the vicinity of nitrogen and boron substitutional impurities.

The next two sections are devoted, respectively, to investiga-

tions of the effects of the interlayer tunneling of electrons on

the electronic characteristics of the double-walled nanotubes

and to analysis of electronic properties of samples in the form

of single-walled nanotubes embedded in a semiconductor

matrix. Next, we discuss the nanorods in the form of nano-

tubes, the inner cavity of which is filled with transition metals.

In the last part of this article, a brief summary of the relativis-

tic version of the LACW method is given and spin-orbit gaps

in metallic carbon nanotube and carbines are discussed.

Nanotubes’ Structure

The single-walled nanotubes can be considered as a result of

sewing of corresponding graphene nanoribbons.[12] The CAC

bond length dCAC 5 1.42 Å and a pair of positive integers

n1� n2, determine the spatial arrangement of atoms in a

three-dimensional structure of tubule. Figure 1 shows that, in

the non-chiral single-walled (n, n) armchair and (n, 0) zigzag

nanotubes, the two bonds of each hexagon are oriented per-

pendicular and parallel to the nanotube symmetry Z axis,

respectively. Generally, the tubes are chiral with intermediate

hexagons orientation with respect to Z axis. The translational

cells of non-chiral tubes are relatively small, while they can be

huge in the chiral tubes.
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Nanotubes Cylindrical Muffin-Tin Potential

The original both nonrelativistic[10,11] and relativistic[14–17]

LAPW techniques for bulk materials are based on a muffin-tin

(MT) approximations for electronic potentials. That is, the

potential V(r) is constructed to be the spherically symmetric in

the regions of atoms and constant between them. Our

method is based on the MT approach too.[6,7,18–20] However,

there is a great difference between the bulk and nanomateri-

als, because an electron transport is unlimited in all directions

in the first case, while in nanotubes it is surely determined by

the size and tubular shape. Therefore, MT method must be

slightly adapted to the cylindrical structures.

According to the cylindrical MT approximation, we consider the

tube to be positioned between infinite barriers Xa and Xb, which

separate the multiatomic system between the two vacuum

regions Xv outside and inside of tubule (Fig. 2). The radii

a 5 RNT 1 d, b 5 RNT – d depend on a radius of tubule RNT and a

distance 2d between Xa and Xb barriers. Practically, we use the

2d 5 4.6 a.u., which predicts the valence band width values equal

to about 22 eV for all single-walled nanotubes. Similar to the

APW/LAPW model, we also apply a q1/3 local density exchange

potential,[20] where the electron density q(r) of tubule being calcu-

lated as a superposition of atomic densities. Inside the MT spheres,

its spherically symmetric part q(r) is taken. In the interspherical

space, the potential V(r) 5 0 is taken as the energy zero point.

Single-Walled Armchair and Zigzag Nanotubes

Let us start from the simplest case of the achiral single-walled

armchair and zigzag nanotubes.[6,7,17–24] Such tubules have rela-

tively small cells, and the computer calculations can be per-

formed with account of translational symmetry only. In our

Figure 1. (a) Graphene monolayer with indexed lattice sites. Rolling the layer

from (0,0) to (n1, n2) point gives a single-walled (n1, n2) tubule. (b) Examples

of armchair (7,7), zigzag (12,0), and chiral (15,8) nanotubes. (Reproduced

from Ref. 13, with permission from American Physical Society.).

Figure 2. Nanotube in a tubular potential. (Reproduced from Ref. 20, with

permission from Springer.).
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method, the eigenfunctions Wn;k rð Þ of the Schr€odinger equation

are the superposition of the basis Wk
PMN LACWs taken to be the

eigenfunctions of this equation for the interspherical and MT

regions. Cylindrical indices P, M, and N are defined in Eqs. 3–6;

Moreover, the functions Wk
PMN should be continuous together

with their first derivatives. In the interatomic region, the LACWs

are the solutions of the Schr€odinger equation for electron in the

tubular potential well. Using the cylindrical coordinate system

(Z,U,R) and Rydberg units, this equation can be written as
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:

(
(2)

The solutions of Eq. 1 with potential (2) can be taken from

the text books in quantum mechanics.[25,26] They are the prod-

ucts of three functions

Wk
PMN Z;U; Rð Þ5Wk

PðZÞWM Uð ÞWMN Rð Þ: (3)

The functions

Wk
PðZÞ5ð1=

ffiffiffi
c
p
Þexp iðk1kPÞZ½ �; kP5ð2p=cÞP; P50;61;

62; . . . ;2p=c � k � p=c;
(4)

and

WM Uð Þ5 1ffiffiffiffiffiffi
2p
p eiMU;M50;61;62; . . . (5)

describe the propagation of electrons along the translation

axis of tube and their rotation about this axis, respectively. The

functions WMN(R) corresponding the radial movement of elec-

trons and depending on the radial quantum number N 5 1,

2,. . . are solutions of the equation

2
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Because U(R) 5 0 at b� R� a, the Eq. 6 takes a form of a

Bessel equation

d2

dR2
1

1

R

d

dR
1j2

jMj;N2
M2

R2

� �
WMN Rð Þ50; (7)

where jjMj,N 5 {EjMj,N}1/2. The solutions of the Eq. 7 are the

superposition of the Mth order cylindrical functions of the first

JM and second YM types[27,28]

WMN Rð Þ5CJ
MNJM jjMj;NR

	 

1CY

MNYM jjMj;NR
	 


: (8)

The constants CJ
MN and CY

MN are chosen from the conditions

of normalization and vanishing of the WMN Rð Þ functions at the

barriers Xa and Xb.[18,19,24]

Similar to LAPW technique of solids,[8–11] in the MT regions

of atoms aMT, the basis LACWs are expanded in spherical har-

monics Ylm h;uð Þ as

WPMN;k
aMT

q; h;uð Þ5
X1
l50

Xl

m52l

½APMN;k
lm;aMT

ul;aMT
q; El;aMT

	 

1BPMN;k

lm;aMT
_ul;aMT

q; El:aMT
ð Þ�Ylm h;uð Þ:

(9)

Here, the local spherical coordinates (r,h,u,) are used, while

the ul;aMT
functions are obtained from the atomic radial

Schr€odinger equation

1

q
d2qul;aMT

ðqÞ
dq2

1 El;aMT
2VaMT

ðqÞ2 lðl11Þ
q2

� �
ul;aMT

ðqÞ50; (10)

where _ul;aMT
5 @ul;aMT

=@E
� �

El;aMT

and VaMT
is the electron potential

of the atomic aMT sphere. The APMN;k
lm;aMT

and BPMN;k
lm;aMT

coefficients can

be calculated from the conditions that the basis functions

together with their first derivative are continuous at q5raMT
.

This algebraic problem was solved in the terms of an addition

theorem for Bessel functions,[7,18] where the following analytical

expressions for coefficients APMN;k
lm;aMT

and BPMN;k
lm;aMT

were obtained

APMN;k
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5r2
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0
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2;lm;aMT
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Here, ZaMT
, UaMT

, RaMT
are the cylindrical coordinates of atom

a��, a prime indicates a derivative with respect to the radius

q, and

IPMN;k
1;lm;aMT

52

ðp=2

0

exp iKPraMT
coshf gJm jjMj;NraMT

sinh
	 


P
jmj
l coshð Þsinhdh;

(16)

IPMN;k
2;lm;aMT

52

ðp=2

0

exp iKPraMT
coshf gfiKPcoshJm jjMj;NraMT

sinh
	 


10:5jjMj;Nsinhg Jm21 jjMj;NraMT
sinh

	 

2 Jm11 jjMj;NraMT

sinh
	 
� �

3P
jmj
l coshð Þsinhdh;

(17)

where P
jmj
l are the augmented Legendre polynomials. This

determines finally the basis Wk
PMN(r) functions.

The formulas for the overlap and Hamiltonian matrix ele-

ments and solving the secular equation using the LACW

basis are presented elsewhere.[7,18,19] As the results, one gets
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the energies En(k) of electron bands and the eigenfunctions

Wn;k rð Þ in form of combinations of the basis Wk
PMN rð Þ

functions

Wn;k rð Þ5
X
PMN

akn
PMNWk

PMN rð Þ: (18)

As the first example of application, the Figure 3 shows the

calculated LACW band structures for the armchair (12,12) car-

bon nanotube in comparison with similar H€uckel data.[18,29]

Both the H€uckel and LACW dispersion curves show the metal-

type zero-gap band structures of this tube with the Fermi level

located at the crossing of two dispersion curves at the Brillouin

zone point k � (2/3)(p/c). However, the LACW calculation gives

much more informative band structure, because this method

describes not only p-state, but also the inner pr and s bands. It

takes into account the tubules curvature, sp and rp hybridiza-

tions, and other effects of which are beyond the H€uckel approx-

imations. For example, there are intersections and overlaps of p
and r curves, the highest occupied r level Cv(r) being located

notably above the highest occupied p level Cv(p).

The dependences of the direct rp* and pp* optical transi-

tion energies versus the inverse diameter d21 of the (n, n)

tubules show significant deviations from the equation Eg �
d21 predicted by the simple p electron model (Fig. 4). The sit-

uation becomes more complicated because of the very close

energy values of pp* and rp* transitions and the crossing of

corresponding curves. For the (3,3) nanotube with very small

diameter and strongest rp mixing, the Sc1 singularity coincides

with the Fermi level, resulting in great increase of the density

of states at this level and superconductivity of nanotube.[29]

Figure 5 shows the electron structures of semiconducting

zigzag (13,0) tube calculated using the two methods.[30] Again,

the all-electron LACW results display a much more detailed

information on the bands, although both methods predict this

tubule to be the semiconductor with direct gap at the C
point. In contrast to the simple p electron model, the diameter

dependence of minimum direct pp* transition is oscillating

Figure 3. Band structure of (12,12) carbon nanotube calculated using the

Huckel (top) and LACW (bottom) methods. (Reproduced from Ref. 29, with

permission from American Institute of Physics.).

Figure 4. Theoretical direct optical gaps for pp* (series 1)and rp* (series 2)

transitions in zone center and experimental data (series 3) versus diame-

ters, d, of the (n, n) tubes. (Reproduced from Ref. 29, with permission from

American Institute of Physics.).
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function with sharp gap reduction at d< 10 Å and formation

of metallic zigzag nanotubes at d< 6.5 Å (Fig. 6).

Chiral Nanotubes

Previous calculations of carbon nanotubes dealt with examples

of non-chiral tubules having only small translational cell. For

chiral tubes, the translational unit cell are typically very large;

for example, there are more than 105 atoms in translational

cell of the (100,99) tube. Fortunately, all symmetry properties

of nanotubes can be taken into account,[12,31,32] the LACW

theory of electronic band structure of such tubules can be

developed, and the dispersion curves of the tubules like

(100,99) can be calculated successfully.

The (n1,n2) nanotube has an axis of Cn symmetry, where n is

the greatest common factor of n1 and n2. Due to the nth order

rotational symmetry, one can determine the wave vector kU,

and wave functions can be written as follows

W Z;U1txn;R
	 


5eikUtxn W Z;U; Rð Þ: (19)

with integer t. Substituting t 5 n, we find kU 5 L 1 nM; M 5 0,

61, . . .; L 5 0, 1, . . ., n – 1.

The ideal single-walled nanotubes are also invariant under

the screw Ŝðh;xÞ translations, which are the displacements

h5
3dc2c

2

n

n2
11n2

21n1n2ð Þ1=2
5

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3d2

c2c

p

4p
n

RNT
: (20)

along the Z axis with rotations

x52p
n1p11n2p21 n2p11n1p2ð Þ=2

n2
11n2

21n1n2
(21)

about it. Due to the fact that the screw translations are iso-

morphous to the group of common translations, one can use

the Bloch’s theorem and write

W Z1th;U1tx; Rð Þ5eðk1kPÞthW Z;U; Rð Þ: (22)

Now, in the XII region, the basis functions can be presented

as the symmetrized cylindrical waves[13,33,34]

Figure 5. Band structure of (13,0) nanotube calculated using the Huckel

(top) and LACW (bottom) methods. (Reproduced from Ref. 30, with permis-

sion from American Institute of Physics.).

Figure 6. Minimum optical gap E11 versus diameter, d, of the semiconduct-

ing (0,n) tubules. (Reproduced from Ref. 30, with permission from American

Institute of Physics.).
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WII;PMNðZ;U; Rjk; LÞ5 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ph=n

p
3expi k1kP2 L1nMð Þx

h

h i
Z1 L1nMð ÞU

n o
3CJ;L

M;NJL1nM jjL1nMjR
	 


1CY;L
M;NYL1nM jjL1nMjR

	 

(23)

which are the solution of the Schr€odinger equation for the

electron in the tubular potential well and satisfy the symmetry

properties Eqs. 19, 22. As above, the coefficients CJ;L
MN and CY;L

MN

are found by equating to zero the wave function at the outer

and inner cylindrical potential barriers Xa and Xb as well as

from normalization conditions.

The basis functions in the regions of atomic spheres are

again expanded in the Ylm series of the linear combination of

spherical harmonics Eq. 9. Applying the sewing conditions, we

obtain the explicit formulas for basis LACWs, determine the

overlap and Hamiltonian integrals, and calculate the dispersion

laws for electrons using the secular equation.

Figure 7 shows the band structure of the chiral (11,3) tubule

with 652 atoms in the translational unit cell. There is no rota-

tional symmetry in this system. By taking into consideration

the screw symmetry of the nanotube, only about 150 basis

functions are required for convergence of electronic levels

with an accuracy of 0.01 eV and the band structure is seen to

be very simple. Particularly, there are only four dispersion

curves in a valence band corresponding to the doubly occu-

pied predominantly s, p1r, p2r, and pp electronic states and

only one low-energy unoccupied pp*-type dispersion curve in

the conduction band. (If only translations were taken into

account, we would obtain a difficult-to-analyze band structure

containing 1304 bands in the valence band and 326 p-bands

in the conduction band.) According to the LACW data, the

nanotube (11,3) is a semiconductors with the direct energy

gaps E11 equal to 0.656 at k 50.24(p/h).

Another example is the band structure of the chiral (10,5)

nanotube having C5 rotational and screw axes (Fig. 8). Here,

the electron bands depend on the two quantum numbers,

namely, continuous vector k of the screw translations and the

rotational integer number 4� L� 0. According to LACW data,

this nanotube should be the semiconductor with the smallest

optical gap equal to 0.58 eV and corresponding to the direct

excitation at point k � 0.57(p/h) for L 5 3. The second one cor-

responds to the direct transition at k � 0.86(p/h) for L 5 4 and

energy equal to 1.01 eV. For the third gap equal to 1.82 eV

the direct excitation takes place at k � 0.28(p/h) for L 5 2.

As a decisive demonstration of the effectiveness of this version

of our method (for the Guinness Book of Records), we calculated

the dispersion curves structure of the (100,99) tubule and pre-

dicted the semiconducting properties of this system with mini-

mum optical gap equal to 0.04 eV near Brillouin zone center.[13]

Substitutional Impurities

Based on the LACW and Green’s function techniques, an ab ini-

tio method for calculation of the electronic structure of the

point substitutional impurities in the nanotubes is devel-

oped.[35] In the band structure studies, the central problem is

computation of the wave functions and energies using the

Schr€odinger equation. However, the calculation of these char-

acteristics can be avoided, if instead the Green’s function Gðr;
r0; EÞ is determined.[36,37] Particularly, the spectrally and space-

resolved density of states can be obtained from the imaginary

part of Gðr; r0; EÞ using the following equation

qðr; EÞ52
1

p
ImGðr; r0; EÞ: (24)

For ideal nanotube, in terms of a complete set of the eigen-

functions Wk kjrð Þ and eigenvalues Ek(k) calculated using the

LACW method, the following spectral representation can be used

Gðr; r0; EÞ5 c

2p

X
k

ðp=c

2p=c

wkðrjkÞw�kðr0jkÞ
E2EkðkÞ1ie

dk: (25)

to obtain the Green’s function ðe! 01Þ.

Figure 7. Band structure of the (11,3) tubule calculated using LACW (left)

and p electron (right) methods with account of screw symmetry. (Repro-

duced from Ref. 13, with permission from American Physical Society.).
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In the case of the impurity tubule, the equation for the

Green’s function ~Gðr; r0; EÞ can be written as

Ĥ2E
� �

~Gðr; r0; EÞ52d r2r0ð Þ

2DV rð Þ ~Gðr; r0; EÞ:
(26)

Here, Ĥ is the Hamiltonian of the perfect tubule and DV rð Þ
5~V rð Þ2V rð Þ is a difference between the potentials of the

doped and perfect tubes. It follows from this equation that

the Green’s function ~Gðr; r0; EÞ corresponding to the new Ham-

iltonian Ĥ1DV rð Þ is related to the Green’s function Gðr; r0; EÞ
of the Ĥ operator via the Dyson integral equation

~Gðr; r0; EÞ5Gðr; r0; EÞ1
ð

Gðr; r00; EÞDV r
00


 �
~Gðr00; r0; EÞdr00: (27)

Most important is that the perturbed potential V(r) is well

localized near the impurity center.

For array of the spherically symmetric nonoverlapping

potentials, the Green’s function is defined via

2D1VnaðrÞ2Ef gGðr1Rna; r01R
0
n0a0 ; EÞ5

2dna;n0 a0 dðr2r0Þ:
(28)

One can represent the solutions of this equation as a series

expansion in spherical harmonics[38–41]

Gðr1Rna; r01Rn0a0 ; EÞ5

2idn;n0da;a0
ffiffiffi
E
p X

L

una
l ðr<; EÞYLðr̂ÞHna

l ðr>; EÞY�L ðr̂
0Þ

1
X
L;L0

una
l ðr; EÞYLðr̂ÞGna;n0a0

L;L0 ðEÞun0a0
l0 ðr0; EÞY�L0 ðr̂

0Þ:

(29)

Here, L5ðl;mÞ are the orbital quantum numbers,

r<5minðr; r0Þ, r>5maxðr; r0Þ, Gna;n0a0

L;L0 ðEÞ are the energy-

dependent coefficients of expansion,

Hna
l ðr; EÞ5una

l ðr; EÞ1iNna
l ðr; EÞ; (30)

the una
l ðr; EÞ and Nna

l ðr; EÞ are the regular and irregular solu-

tions of radial equation 10. In each MT sphere, the expansion

(29) satisfies the general Schr€odinger Eq. 27, and the structural

Green’s function Gna;n0a0

L;L0 ðEÞ describes the connection of the sol-

utions in the different spheres. In this way, the multiple-

scattering problem is reduced to the solution of an algebraic

problem.

Comparison of Eqs. 27 and 29 allows us to calculate the

matrix elements of the Green function Gna;n0a0

L;L0 ðEÞ for an ideal

nanotube. If they are known, the structural Green’s function
~G

na;n0a0

L;L0 ðEÞ for the impurity nanotube can be calculated using a

matrix Dyson equation

~G
na;n0a0

L;L0 ðEÞ5Gna;n0a0

L;L0 ðEÞ1X
n00 ;a00

X
L00

Gna;n00a00

L;L00 ðEÞDtn00a00
l00 ðEÞ ~G

n00a00 ;n0a0

L00 ;L0 ðEÞ:
(31)

Here,

tna
l Eð Þ5

ðrna

0

jl

ffiffiffi
E
p

r

 �

VnaðrÞul;na r; El;na
	 


r2dr (32)

is a scattering t matrix for the potential VnaðrÞ, and Dtn00a00
l00 ðEÞ5

~t
n00a00

l00 2tn00a00
l00 is a difference between the t matrices of the doped

and perfect nanotubes. Since this difference is restricted to

the region of the impurity, the Green’s function can be

determined in real space by matrix inversion, the rank of

which ndðlmax11Þ2 depends on the number nd of perturbed

MT potentials and maximum angular momentum lmax used

in expansion (19). For the single impurities studied, we use

a single-site approximation that is we neglected the pertur-

bations of potentials of the host atoms surrounding the

impurity.

Substituting the ~G
na;n0a0

L;L0 ðEÞ to Eq. 29, we obtain the Green’s

function ~Gðr; r0; EÞ for calculating the electron properties of the

nanotube with impurity. In work,[35] we apply this technique to

the particular case of local electronic density of states in the

Figure 8. Band structure of the (10,5) tubule calculated using LACW (left)

and p electron (right) methods with account of screw and rotational sym-

metry. (Reproduced from Ref. 13, with permission from American Physical

Society.).
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regions of the impurity B and N atoms in the carbon nanotubes

having different geometries and electron spectra.

Figure 9 exhibits the effects of substitutional impurities on

the density of states of chiral (11,3) tubule. There is a great

difference between the effects of the donor and acceptor

impurities in the vicinity of optical gap. The boron-related

states clearly close the optical gap of the perfect nanotubes.

The influence of nitrogen impurity is limited with a small

growth of the local density of states below and above the EF.

This is also truth for other doped semiconducting tubules

investigated.[35]

In the Fermi region of purely metallic carbon (5,5) tubule,

the electronic structure is also significantly affected by impur-

ities (Fig. 10), but both defects do not break the metallic zero-

gap type of density of states. An impurity-induced increase of

the density of states is the main perturbation of electron prop-

erties of all tubules having the metallic band structures.

Double-Walled Nanotubes

There are the two tubules (inner and outer) in a double-walled

carbon nanotube with van der Waals type coupling between

them. Sometimes such nanotubes are considered as the nano-

material analogs of coaxial cables. Although, the chemical

bonding of the inner and outer concentric cylindrical layers is

weak, a tunneling exchange of electrons between them is pos-

sible and can perturb the electron properties of such nanoca-

bles. In the terms of LACW and MT approximations, these

effects were studied in works.[42,43]

The sense of MT approach to the double-walled systems

should be clarified. Actually, to account for the effects of elec-

tron tunneling, we assume that the potential barriers Xa1 and

Xb2 between the individual tubules are high, but finite (Fig.

11). The constant potential Vf in the classically forbidden

region Xf, the same for all nanotubes, was selected using the

data on the bulk graphite band structure, in which the inter-

layer coupling effects are observed as the splittings and shifts

of the band curves by a couple of eV.[44]

For the potential shown in the Fig. 11, the solutions of the

Schr€odinger equation can be found as follows. In the region

Xf between the two tubules and in interatomic space XII,j of

two tubes (j 5 1, 2), the wave functions are obtained again

from the Eq. 1 written using the cylindrical coordinates, but

the electron potential U(R) has now a somewhat more sophis-

ticated form

Figure 9. Local density of states of the perfect (C) and boron (B) and nitro-

gen (N) doped chiral semiconducting (11,3) nanotube. (Reproduced from

Ref. 35, with permission from American Physical Society).

Figure 10. Local density of states of the perfect (C) as well as boron (B)

and nitrogen (N) doped achiral metallic (5,5) nanotube. (Reproduced from

Ref. 35, with permission from American Physical Society).

REVIEWWWW.Q-CHEM.ORG

International Journal of Quantum Chemistry 2016, 116, 174–188 181

http://q-chem.org/
http://onlinelibrary.wiley.com/


U Rð Þ5

0; b1 � R � a1;b2 � R � a2

1 R < b1;R > a2

VF; a1; � R � b2

:

8>><
>>: (33)

Because of the rotational symmetry of the potential U(R), the

product W(Z,U,R) 5 Wk
P(Z)WM(U)WMN(R) provides again the basis

function in these space. For the XII,j, where the potential U(R) 5 0,

the radial functions are the same as for the isolated tubules Eq. 8

Wj
II;MN Rð Þ5CJ;j

MNJM jjMj;NR
	 


1CY;j
MNYM jjMj;NR

	 

; (34)

and in the intertube space Xf, where U(R) 5 Vf, the Wf ;MN Rð Þ
functions are the solutions of the following equation

d2

dR2
1

1

R

d

dR
1 Vf 2j2

jMj;N
	 


2
M2

R2

� �
Wf jMj;N Rð Þ50: (35)

We are interested in the electronic band states of a double-

walled nanotube located below the potential Vf of the classical for-

bidden region (Vf,>j2
jMj;N), where Eq. 35 takes a form of modified

Bessel equation, the solutions of which are superposition of modi-

fied Bessel functions of the first KM and second IM kinds

Wf jMj;N Rð Þ5Ck
M;NKM jf

M½ �;NR

 �

1Ck
M;NIM jf

M½ �;NR

 �

; (36)

where jf
jMj;N5 Vf 2j2

jMj;N


 �1=2

. The function WIIf ;MN Rð Þ must be

equal to zero at R 5 a2 and R 5 b1, be continuous and differentia-

ble at R 5 a1 and R 5 b2 and normalized that determines the

coefficients CJ;j
MN and CY;j

MN (j 5 1, 2), CK
MN, CI

MN, jjMj;N, and finally

the form of the functions Wf ;MN Rð Þ. As before, in the atomic

spheres aMT of each tubule, the basis Wk
PMN functions of nano-

tube are expanded in series of Yl,m harmonics Eq. 9 with the Alm

and Blm coefficients selected to provide continuity and differenti-

ability of the LACWs on the MT borders. The final results for the

double-walled systems including the overlap and Hamiltonian

matrix elements can be found in paper,[42] where the total band

structures and densities of states in the gap regions were com-

puted for about 20 commensurate semiconducting zigzag and

metallic armchair nanotubes, in which the distance between the

walls is almost identical to distance between the graphite layers.

Figures 12 and 13 show the examples of calculated results for

the (13,0)@(22,0) and (5,5)@(10,10) systems, respectively. One can

see that intertube coupling causes the changes of bands, which

manifests itself as the shifts in the positions and intensities of

peaks and gaps of the inner and outer tubules. However, tunnel-

ing of electrons between the nested tubules does not destroy

the semiconductor or metallic type of system.

Embedded Nanotubes

In paper,[45] the samples of nanotubes embedded into semi-

conductor epitaxial layers were obtained and the electrical

conductivity of nanotubes in such conditions were measured.

This work motivated our LACW simulation of the electronic

properties of nanotubes embedded in an infinite solid

matrix.[46,47]

Figure 14 shows schematically the model of nanotube in

the matrix and the potential energy profile. The matrix is con-

sidered as a homogeneous structureless medium with large,

but finite constant potential Vm. In this model, a possible for-

mation of chemical bonds between the tubule and matrix was

neglected, and the role of the crystal matrix was limited by

possibility of delocalization of electrons of nanotubes into the

matrix area.

From the computational point of view, this model of nano-

tube immersed in the unlimited matrix with potential

U Rð Þ5

0; b1 � R � a

1; R < b

Vm; ; R > b

:

8>><
>>: (37)

is even somewhat simpler than the case of double-walled

tube with potential Eq. 33.

In the Xm region, where U(R) 5 Vm with Vm located notice-

ably above the Fermi level, the functions

WMNðRÞ5CK
MNKMðjK

jMjNRÞ; (38)

are obtained from the Eq. 23 at Vm,> j2
jMj;N and up to a con-

stant factor coincides with modified Bessel of the second kind.

Here,

Figure 11. Cross section of double-walled nanotube and potential energy pro-

file. (Reproduced from Ref. 42, with permission from American Physical Society.).
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jK
jMj;N5 Vm2j2

jMj;N


 �1=2

: (39)

In the interspherical and MT regions of nanotube, the basis

functions are determined by previous Eqs. 3 and 9. They can

be sewn together with the solutions (25) that finally deter-

mines the overlap and Hamiltonian integrals given in

elsewhere.[47]

Figures 15 and 16 show the calculated electron bands near

the Fermi level of the metal (5,5) and semiconductor (13,0)

nanotubes depending on the dimensionless parameter em,

which characterizes the position of the electron potential of

the matrix regarding the potential of the nanotubes inter-

spherical area. In both cases, the matrix has a significant

impact on the electronic levels of tubes. In metal tube, the r
valence state Cv1 of the Brillouin center are displaced in the

Figure 13. Electron density of states in the Fermi level region for metallic

nanotubes: (a) and (c) single-walled (5,5) and (10,10) nanotube; (b) core

(5,5) positioned within (10,10) tube; (d) shell (10,10) tube with inside (5,5)

tube. (Reproduced from Ref. 42, with permission from American Physical

Society).

Figure 12. Electron density of states in the gap regions of semiconducting

nanotubes: (a) single-walled (13,0) tubule, (b) core (13,0) tubule positioned

within (22,0) tubule, (c) single-walled (22,0) tubules, (d) shell (22,0) tubule

having inside (13,0) tubule. (Reproduced from Ref. 42, with permission

from American Physical Society).
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direction of the conduction band, which leads to growth of

the density of states and the appearance of a peak at the

Fermi level. The metallic nature of the electronic structure of

nanotubes is not destroyed and, even more, an intrinsic elec-

tronic conductivity of nanotube should increase due to the

increase in number of the free electrons.

In the semiconductor nanotubes, the changes of the elec-

tronic properties are more pronounced. Figures 16 and 17

show that lowering of potential of the matrix and an appropri-

ate increase in the spatial delocalization of the electrons of

tubule lead to a sharp reduction and closing of the optical

gap, with the result that its semiconducting properties are

replaced with metallic ones. The predicted metallization of

semiconducting carbon nanotubes due to their introduction

into the solid environment is consistent with experimental

data, according to which any one of the twenty samples with

nanotubes in the epitaxial layers have been recorded to be

semiconductor, they were all metal.

Atomic Nanowires

The possibility of filling of the interior of nanotubes with met-

als as shown in Figure 18 greatly expands their scope of

application.

The above nanofilament structure are designated as M@nano-

tube. In the atomic nanowires, the electron motion is confined

to cylindrical region with only one (outer) impenetrable cylindri-

cal barrier Xa, the radius of which is the same as in pure

undoped nanotubes. The potential in the interatomic region is

U Rð Þ5
0; R � a

1; R � a
:

(
(40)

The function WMN Rð Þ5CJ
MNJM jjMj;NR

	 

corresponding to the

radial movement of electron in the interspherical regions XII of

the nanofilament depends on the cylindrical Bessel functions

of the first JM kind only. From the algebraic point of view, the

problem of nanofilaments without inner vacuum region with

potential Eq. 40 is somewhat simpler than problems of nano-

tubes. It was studied in the papers[6,7] and applied to the atomic

Figure 14. Nanotube positioned into a bulk material and potential energy pro-

file. (Reproduced from Ref. 46, with permission from American Physical Society.).

Figure 15. Density of states of the single-walled (5,5) nanotube embedded

into a crystal matrix for different barriers; (a) em 51 nonembedded tubule;

(b–d) em 5 6, 4, and 2, respectively. (Reproduced from Ref. 46, with permis-

sion from American Physical Society).
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nanowires[19] and nanotubes filled with 3d metals.[48,49]Figures

19 and 20 show the total and partial densities of states of elec-

trons in the armchair Cun@(5,5) carbon nanotube intercalated

with one, two, three, and four copper atoms per translation unit

cell. The Fermi level of the pure carbon nanotube is located in

the dip of the plot of density of states versus energy; as a result,

the density of states at the Fermi level is low that can restrict

the electrical conductivity of such a tubule. The introduction of

copper atoms dramatically changes the pattern; the dip at the

Fermi level is filled, and the electron concentration at the Fermi

level increases by an order of magnitude. In the Cun@(5,5) com-

pounds with n 5 3 and n 5 4, the Fermi level coincides with the

peak of the density of states.

The partial densities of states (Fig. 20) show that this dip is

filled by both the metal d and the carbon h electrons; the

metal d and carbon h electrons are equally involved in elec-

tron transfer in intercalated wires. The introduction of copper

not only affects the conducting state of the carbon nanotube

but also changes the whole pattern of the valence band of

the nanotube, in particular, it increases the valence band width

by 5–10 eV due to the low-energy shift of the 2s(C) states.

Spin-Orbit Coupling

Theoretical and experimental studies of a coupling of the elec-

trons spin and their orbital motion is subject of great interest.

Because of the cylindrical geometry of the nanotubes, the

electron p-states located near the Fermi region can be consid-

ered as the clockwise and anticlockwise electron orbits encir-

cling the tube. In the absence of a spin-orbit (SO) interaction,

the double orbital and double spin degeneracy should yield

the fourfold degenerate electronic levels. In papers,[50,51] we

calculated the SO gaps in the Fermi energy region for the

metallic (n, n) tubules and for the metallic and semiconducting

linear carbon chains (carbynes). These cases are very interest-

ing, because a formation of gap between the occupied and

unoccupied bands is purely relativistic effect here. To obtained

a relativistic version of LACW theory, we use the simple two-

component relativistic Hamiltonian[14,52,53]

Figure 16. Density of states of the single-walled (13,0) nanotube embed-

ded into a crystal matrix for different barriers; (a) em 51 nonembedded

tubule; (b–d) em 5 6, 4, and 2, respectively. (Reproduced from Ref. 46, with

permission from American Physical Society.).

Figure 17. Minimum energy gap E11 versus em for a (13,0) nanotube.

(Reproduced from Ref. 46, with permission from American Physical

Society.).

Figure 18. Structure of intercalated nanotube. (Reproduced from Ref. 48,

with permission from Springer.).
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H5
p2

2m
1V1

�h

4m2c2
r � rVð Þ3p½ �: (41)

Here, c is the velocity of light and r is the Pauli matrix.

The sum H0 5 p2/(2m) 1 V is the nonrelativistic operator

used above and the third term of the Hamiltonian is the famil-

iar SO coupling operator, which may perturb the nonrelativistic

band picture. Because the nonrelativistic terms make the main

contribution to the energy, we use the perturbation proce-

dure. Initially, the eigenvalues En
0(k) and eigenfunctions

W0
n;k rð Þ5

X
PMN

akn
PMNWk

PMN rð Þ: (42)

of the H0 are found. Then, using the pure spin functions a and

b, the spinor basis partners W0
n;k rð Þa and W0

n;k rð Þb are formed.

The matrix elements of the SO part between the spinor basis

functions are calculated, and the resulting secular matrix is

diagonalized to determine the relativistic energies and

functions.

Outside the MT spheres, the rV50. Due to the spherical

symmetry of the VaMT
(q), the SO operator can be written as[14]

HS2O5
1

c2
r � rVaMT
ð Þ3p½ �5 1

c2

1

q
dVaMT

dq
rL

5
1

c2

1

q
dVaMT

dq
1

2
r1L21

1

2
r2L11rzLz

� �
;

(43)

where

Figure 19. Total densities of states in Cun@(5,5) nanotubes with n 5 0,1,2,

3, and 4. The energies are referenced to the Fermi level. (Reproduced from

Ref. 48, with permission from Springer.).

Figure 20. Partial densities of states of (a) copper d electrons and (b) car-

bon p electrons. (Reproduced from Ref. 48, with permission from Springer.).

Figure 21. LACW bands of (5,5) nanotube calculated for Fermi energy

region with (above) and without (below) spin-orbit coupling. (Originally

published under a CC BY-NC-SA license by IOP Publishing. Reproduced

from Ref. 50, with permission from Institute of Physics).
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r1a 5 0; r–a 5 2b; rza 5 a; r1b 5 2a; r–b 5 0; rzb 5 –b: (44)

LzYlmðhuÞ5mYlmðhuÞ; (45)

L6YlmðhuÞ5 l l11ð Þ2m m61ð Þ½ �1=2Ylm61ðhuÞ; (46)

The Lz, L6 operators do not perturb the radial part of the

wave function, and the integral hWk
P2 M2 N2

rð Þv2jHS2OjWk
P1 M1 N1

rð Þ
v1i takes the form of product of the radial and angular parts

simplifying calculation of these matrix elements, which are pre-

sented in papers.[50,51]

Figure 21 shows the dispersion curves bands of the (5,5)

nanotube for the Fermi level region calculated with and with-

out SO interaction. In the absence of SO interaction, the occu-

pied p-bonding and unoccupied p*-antibonding states cross

near k 5 2p/(3d), but the SO coupling opens the gap equal to

0.2 meV and the metallic character of nanotube band structure

is destroyed. Each energy curve still has the double spin

degeneracy, because achiral (5,5) nanotube has the inversion

symmetry and the SO interaction does not break the time-

reversal symmetry.

Figure 22 shows the SO coupling effects in the band curves

of the carbynes. In the absence of SO interaction, the p bands

would be fourfold degenerate ones. In a metallic cumulenic car-

bon chain (. . .5C5C5. . .)n, SO splitting of p band is equal to

2.4 meV. In the polyynic semiconducting (. . .2C	C2C	C2. . .)n

chain, the SO gaps are different for the highest occupied and

lowest unoccupied states (3.1 and 2.1 meV, respectively). The

larger curvature of electron orbits encircling the monoatomic

chains as compared with carbon nanotubes results in the larger

SO gaps.

Conclusions

In this review paper, the main ideas of the LACW method are

summarized. In conclusion, for the sake of completeness, we

note that the LACW method was also used previously to calcu-

late the electronic properties of the non-carbon inorganic

compounds: the single-atom width transition metal chains,[54]

the pristine SiC,[55] BN,[56] BC2N, and GaAs[57] nanotubes, the

segmented nanotubes composed of the alternating layers of

BN and SiC nanotubes,[58] the BN nanotubes intercalated with

transition metals,[56,59] the BN tubes with the intrinsic NB and

BN defects and with isoelectronic substitutional impurities PN,

AsN, SbN, InB, GaB, and AlB.
[60–62] The calculations of non-

carbon systems do not require any new methodical receptions,

so we will not focus on these studies in more detail. We hope

that we managed to convince the reader that the use of cylin-

drical waves for the nanotubes offers the obvious advantages

in the studies of their properties.

Keywords: nanotubes � augmented cylindrical waves � band

structure
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